Faculdade de Computação - FACOMP/ICEN
URI Permanente para esta coleção
Navegar
Navegando Faculdade de Computação - FACOMP/ICEN por Assunto "Absorção intestinal humana"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Analyzing the impact of dimensionality reduction over human intestinal absorption prediction through machine learning(2022-02) CARDOSO, Eduardo Gil Serrão; RODRIGUES, Caio Marcos Flexa; http://lattes.cnpq.br/7685787461835870; SALES JÚNIOR, Claudomiro de Souza de; http://lattes.cnpq.br/4742268936279649Uma propriedade desejável no desenvolvimento de drogas é entrega oral. A triagem virtual de compostos químicos de acordo com sua biodisponibilidade oral com inteligência computacional pode acelerar a predição de sua absorção intestinal humana (HIA). A despeito da existência de vários estudos almejando predizer a permeabilidade intestinal de compostos químicos, nenhum tentou avaliar o impacto do uso de propriedades fisicoquímicas e estruturais relacionadas à biodisponibilidade oral com técnicas de redução de dimensionalidade (DR) e aprendizado de máquina (ML). Este estudo de caso apresenta uma análise sobre o impacto da aplicação de técnicas de redução de dimensionalidade tais como Análise de Componentes Principais (PCA), PCA baseado em Kernel (KPCA), Ivis, Aproximação e Projeção de Manifold Uniforme (UMAP) e Decomposição de Valor Singular Truncado(TSVD), conjuntamente com preditores de ML tais como Redes Neurais Artificiais (ANN), K-Vizinhos mais Próximos (KNN), Máquina de Vetores de Suporte (SVM) e Floresta Aleatória (RF) na predição de HIA de pequenas moléculas, dando foco ao comportamento dos modelos conforme a dimensionalidade varia. Os resultados demonstram que, apesar de reduzir a dimensionalidade em mais de 90%, os modelos de menor dimensionalidade para o KNN, RF e SVM ainda apresentaram resultados competitivos, demonstrando a viabilidade e o potencial de técnicas de DR enquanto etapa de pré-processamento.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) On reducing the dimensionality of small molecule data for visual-exploratory analysis in human intestinal absorption prediction(2022-02-21) MOREIRA, Igor Matheus Souza; OLIVEIRA, Ewerton Cristhian Lima de; http://lattes.cnpq.br/8998575507999079; SALES JÚNIOR, Claudomiro de Souza de; http://lattes.cnpq.br/4742268936279649Biodisponibilidade oral é uma propriedade desejável no desenvolvimento de drogas. A triagem virtual de compostos de acordo com suas propriedades com inteligência computacional pode acelerar a predição de sua absorção intestinal humana (HIA). A despeito da existência de estudos almejando predizer a HIA de compostos, técnicas de redução de dimensionalidade (DR) que extraem características são raramente empregadas para possibilitar análises visual-exploratórias e pré-processar dados para algoritmos de aprendizado de máquina (ML). Este trabalho aplica seis projetores de DR (ivis, KPCA, PCA, PCS, TSVD e UMAP) para produzir projeções bi e tridimensionais conjuntamente com quatro classificadores de ML (KNN, MLP, RF e SVM) na predição de HIA de pequenas moléculas, um esforço que englobou a análise de cinquenta e dois pipelines. Os resultados demonstram que, a despeito de reduzir a dimensionalidade em mais de 98%, os pipelines envolvendo DR ainda apresentaram resultados competitivos enquanto também facilitaram a visualização, demonstrando a viabilidade e o potencial de técnicas de DR via extração de características como uma etapa automatizada de pré-processamento.