Analyzing the impact of dimensionality reduction over human intestinal absorption prediction through machine learning

Carregando...
Imagem de Miniatura

Data

01-02-2022

Título(s) alternativo(s)

Tipo de acesso

Acesso Abertoaccess-logo

Citar como

CARDOSO, Eduardo Gil Serrão. Analyzing the impact of dimensionality reduction over human intestinal absorption prediction through machine learning. Orientador: Claudomiro de Souza de Sales Júnior. 2022. 173 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Faculdade de Computação, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, 2022. Disponível em: https://bdm.ufpa.br/jspui/handle/prefix/7851. Acesso em:.
Uma propriedade desejável no desenvolvimento de drogas é entrega oral. A triagem virtual de compostos químicos de acordo com sua biodisponibilidade oral com inteligência computacional pode acelerar a predição de sua absorção intestinal humana (HIA). A despeito da existência de vários estudos almejando predizer a permeabilidade intestinal de compostos químicos, nenhum tentou avaliar o impacto do uso de propriedades fisicoquímicas e estruturais relacionadas à biodisponibilidade oral com técnicas de redução de dimensionalidade (DR) e aprendizado de máquina (ML). Este estudo de caso apresenta uma análise sobre o impacto da aplicação de técnicas de redução de dimensionalidade tais como Análise de Componentes Principais (PCA), PCA baseado em Kernel (KPCA), Ivis, Aproximação e Projeção de Manifold Uniforme (UMAP) e Decomposição de Valor Singular Truncado(TSVD), conjuntamente com preditores de ML tais como Redes Neurais Artificiais (ANN), K-Vizinhos mais Próximos (KNN), Máquina de Vetores de Suporte (SVM) e Floresta Aleatória (RF) na predição de HIA de pequenas moléculas, dando foco ao comportamento dos modelos conforme a dimensionalidade varia. Os resultados demonstram que, apesar de reduzir a dimensionalidade em mais de 90%, os modelos de menor dimensionalidade para o KNN, RF e SVM ainda apresentaram resultados competitivos, demonstrando a viabilidade e o potencial de técnicas de DR enquanto etapa de pré-processamento.

Fonte

1 CD-ROM

Fonte URI