On reducing the dimensionality of small molecule data for visual-exploratory analysis in human intestinal absorption prediction

Carregando...
Imagem de Miniatura

Data

21-02-2022

Título(s) alternativo(s)

Tipo de acesso

Acesso Abertoaccess-logo

Citar como

MOREIRA, Igor Matheus Souza. On reducing the dimensionality of small molecule data for visual-exploratory analysis in human intestinal absorption prediction. Orientador: Claudomiro de Souza de Sales Júnior 20222. 137 f. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) – Faculdade de Computação, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, 2022. Disponível em:. Acesso em:.
Biodisponibilidade oral é uma propriedade desejável no desenvolvimento de drogas. A triagem virtual de compostos de acordo com suas propriedades com inteligência computacional pode acelerar a predição de sua absorção intestinal humana (HIA). A despeito da existência de estudos almejando predizer a HIA de compostos, técnicas de redução de dimensionalidade (DR) que extraem características são raramente empregadas para possibilitar análises visual-exploratórias e pré-processar dados para algoritmos de aprendizado de máquina (ML). Este trabalho aplica seis projetores de DR (ivis, KPCA, PCA, PCS, TSVD e UMAP) para produzir projeções bi e tridimensionais conjuntamente com quatro classificadores de ML (KNN, MLP, RF e SVM) na predição de HIA de pequenas moléculas, um esforço que englobou a análise de cinquenta e dois pipelines. Os resultados demonstram que, a despeito de reduzir a dimensionalidade em mais de 98%, os pipelines envolvendo DR ainda apresentaram resultados competitivos enquanto também facilitaram a visualização, demonstrando a viabilidade e o potencial de técnicas de DR via extração de características como uma etapa automatizada de pré-processamento.

Fonte

1 CD-ROM

Fonte URI