Sistema de reconhecimento automático de placas veiculares utilizando visão computacional

Carregando...
Imagem de Miniatura

Data

05-12-2024

Título(s) alternativo(s)

Tipo de acesso

Acesso Abertoaccess-logo

Citar como

HORA, Breno Aires da. Sistema de reconhecimento automático de placas veiculares utilizando visão computacional. Orientador: Daniel da Conceição Pinheiro. 2024. 60 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação) – Faculdade de Engenharia da Computação, Campus Universitário de Tucuruí, Universidade Federal do Pará, Tucuruí, 2024. Disponível em: https://bdm.ufpa.br/jspui/handle/prefix/7573. Acesso em:.
Este trabalho apresenta a detecção e o reconhecimento de placas de identificação veicular com uso de técnicas de visão computacional aplicadas à fiscalização de trânsito. Foi criado um conjunto de dados próprio com placas brasileiras, isso inclui as etapas de gravação, seleção e anotação de imagens, combinado a um conjunto de dados internacional para o treinamento de variantes do modelo YOLO, seguido de uma análise do desempenho geral desses modelos. Além da detecção de placas, o reconhecimento óptico de caracteres (OCR) foi realizado com os modelos EasyOCR e PaddleOCR, enquanto esse último foi o mais eficiente. Os experimentos mostraram que o modelo YOLOv8s-gb superou o YOLOv5su-g em confiança média, sensibilidade média e tempo de processamento. A combinação do PaddleOCR com o YOLOv8s-gb e YOLOv5su-g aplicados a um total de 460 placas, resultou no reconhecimento de 244 e 208, respectivamente, enquanto o EasyOCR reconheceu 118 e 89 placas nos mesmos cenários. O estudo destaca a importância de conjuntos de dados específicos para aprimorar modelos de visão computacional em contextos locais, isso contribui para o avanço do reconhecimento automático de placas veiculares no Brasil.

Fonte

Fonte URI

Disponível na internet via Sagitta