Sistema de reconhecimento automático de placas veiculares utilizando visão computacional

dc.contributor.advisor1PINHEIRO, Daniel da Conceição
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2970581734279237pt_BR
dc.creatorHORA, Breno Aires da
dc.creator.Latteshttp://lattes.cnpq.br/7469734009902956pt_BR
dc.date.accessioned2025-01-07T16:22:30Z
dc.date.available2025-01-07T16:22:30Z
dc.date.issued2024-12-05
dc.description.abstractThis work presents the detection and recognition of vehicle identification plates using computer vision techniques applied to traffic enforcement. A proprietary dataset with Brazilian license plates was created, including the steps of recording, selection and annotation of images, combined with an international dataset for training variants of the YOLO model, followed by an analysis of the overall performance of these models. In addition to license plate detection, optical character recognition (OCR) was performed with the EasyOCR and PaddleOCR models, the latter being the most efficient. The experiments showed that the YOLOv8s-gb model outperformed YOLOv5su-g in average confidence, average sensitivity and processing time. The combination of PaddleOCR with YOLOv8s-gb and YOLOv5su-g applied to a total of 460 license plates resulted in the recognition of 244 and 208, respectively, while EasyOCR recognized 118 and 89 license plates in the same scenarios. The study highlights the importance of specific datasets to improve computer vision models in local contexts, contributing to the advancement of automatic license plate recognition in Brazil.pt_BR
dc.description.resumoEste trabalho apresenta a detecção e o reconhecimento de placas de identificação veicular com uso de técnicas de visão computacional aplicadas à fiscalização de trânsito. Foi criado um conjunto de dados próprio com placas brasileiras, isso inclui as etapas de gravação, seleção e anotação de imagens, combinado a um conjunto de dados internacional para o treinamento de variantes do modelo YOLO, seguido de uma análise do desempenho geral desses modelos. Além da detecção de placas, o reconhecimento óptico de caracteres (OCR) foi realizado com os modelos EasyOCR e PaddleOCR, enquanto esse último foi o mais eficiente. Os experimentos mostraram que o modelo YOLOv8s-gb superou o YOLOv5su-g em confiança média, sensibilidade média e tempo de processamento. A combinação do PaddleOCR com o YOLOv8s-gb e YOLOv5su-g aplicados a um total de 460 placas, resultou no reconhecimento de 244 e 208, respectivamente, enquanto o EasyOCR reconheceu 118 e 89 placas nos mesmos cenários. O estudo destaca a importância de conjuntos de dados específicos para aprimorar modelos de visão computacional em contextos locais, isso contribui para o avanço do reconhecimento automático de placas veiculares no Brasil.pt_BR
dc.identifier.citationHORA, Breno Aires da. Sistema de reconhecimento automático de placas veiculares utilizando visão computacional. Orientador: Daniel da Conceição Pinheiro. 2024. 60 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação) – Faculdade de Engenharia da Computação, Campus Universitário de Tucuruí, Universidade Federal do Pará, Tucuruí, 2024. Disponível em: https://bdm.ufpa.br/jspui/handle/prefix/7573. Acesso em:.pt_BR
dc.identifier.urihttps://bdm.ufpa.br/jspui/handle/prefix/7573
dc.rightsAcesso Abertopt_BR
dc.source.uriDisponível na internet via Sagittapt_BR
dc.subjectVisão computacionalpt_BR
dc.subjectConjunto de dadospt_BR
dc.subjectPlacas de licenciamento veicularpt_BR
dc.subjectYOLOpt_BR
dc.subjectOCRpt_BR
dc.subjectComputer visionpt_BR
dc.subjectDatasetpt_BR
dc.subjectVehicle license platespt_BR
dc.subject.cnpqCNPQ::ENGENHARIASpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOpt_BR
dc.titleSistema de reconhecimento automático de placas veiculares utilizando visão computacionalpt_BR
dc.typeTrabalho de Curso - Graduação - Monografiapt_BR

Arquivo(s)

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
TCC_SistemaReconhecimentoAutomatico.pdf
Tamanho:
3.06 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.84 KB
Formato:
Item-specific license agreed upon to submission
Descrição: