Faculdade de Engenharia da Computação - FECOMP/CAMTUC
URI Permanente para esta coleção
Campus de Tucuruí /
Bibliotecária: Mayara de Kassia Pinheiro Menezes
Whatsapp: (94) 98199-9226
E-mail: bibliocamtuc@ufpa.br
Facebook: https://www.facebook.com/bibcamtuc/
Instagram: https://www.instagram.com/bcamtuc/
Navegar
Navegando Faculdade de Engenharia da Computação - FECOMP/CAMTUC por Assunto "Aprendizado de máquina"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Análise preditiva e interpretação da classificação de malwares em sistemas android usando aprendizado de máquina(2024-10-15) AMARAL, Geovani da Silva do; MOREIRA, Caio Carvalho; http://lattes.cnpq.br/1370619943470585Este trabalho apresenta uma análise preditiva para a detecção de malwares em dispositivos Android usando Aprendizado de Máquina e métodos de explicabilidade para interpretar os resultados. Apos os pre-processamento, o conjunto de dados foi reduzido para 34.076 amostras e 179 características de chamadas de sistema e permissões. Entre 13 classificadores avaliados, o eXtreme Gradient Boosting (XGBoost) mostrou-se o mais eficiente, com métricas de acurácia, precisão, recall e F1-Score de aproximadamente 94%, e Tempo de Treinamento de 1,48s. O método SHapley Additive exPlanations (SHAP) foi utilizado para explicar as decisões do modelo, o que revelou chamadas de sistema e permissões sensíveis, como READ PHONE STATE, SYSTEM ALERT WINDOW, SEND SMS, ACCESS WIFI STATE, getpriority e getrlimit, fortemente associados a malwares.Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Predição de desempenho de aplicações CUDA utilizando aprendizado de máquina e características de pré-execução(2024-07-11) SIQUEIRA, Luan Ribeiro; GONZÁLEZ, Marcos Tulio Amaris; http://lattes.cnpq.br/9970287865377659Com a evolução das unidades de processamento gráfico (GPU), as aplicações de computação paralela estão se tornando cada vez mais complexas. Predizer o desempenho dessas aplicações ajuda desenvolvedores a otimizar seus algoritmos escalonadores na distribuição de seus trabalhos. Neste trabalho, foram desenvolvidos e avaliados modelos de aprendizado de maquina para predizer o desempenho de aplicações CUDA utilizando características de pre-execução. Foram comparados os modelos Ridge Regression, Random Forest e Decision Tree em nove aplicações CUDA, utilizando a métrica MAPE. Os resultados mostram que o Decision Tree obteve os menores valores de MAPE, enquanto o Random Forest apresentou um desempenho consistente. Já o Ridge Regression teve desempenho variável devido a sua limitação em lidar com multicolinearidade. O estudo enfatiza a importância considerar as características específicas da aplicação e da GPU ao fazer predições de desempenhoTrabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Sistema de classificação de imagens utilizando uma rede neural Squeezenet embarcada em uma Raspberry Pi(2023-07-10) SILVA, Kamilla Taiwhscki Barros; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; https://orcid.org/0000-0001-8280-2928A Visão Computacional é um campo da Inteligência Artificial caracterizado pelo estudo das informações existentes em imagens, identificando suas características intrínsecas. O estudo da Visão Computacional tem como objetivo a criação de modelos artificiais que imitem as habilidades analíticas da visão humana, para isso são utilizados conceitos de Processamento Digital de Imagens para extrair informações a serem estudadas. Realizar essas operações exige uma grande quantidade de dados para ser efetiva e para isso necessitam-se de algoritmos capazes de processarem essas informações. Nesse contexto, algoritmos de Aprendizado Profundo são ideais para trabalharem com uma imensa quantidade de dados, visto estes possuem eficiência e eficácia para tal. Dessa forma, o uso de Redes Neurais para este propósito se torna bastante adequado, pois essa ferramenta permite que seja possível aprender a partir de um conjunto de exemplos de forma que a generalização dos dados seja adequada aos exemplos fornecidos. No caso de imagens, Redes Neurais Convolucionais são o estado da arte na área de Visão Computacional, sendo possível observar diversas aplicações que envolvem a classificação de imagens, identificação de objetos e reconhecimento de faces. Porém, esses algoritmos são robustos e apresentam uma complexa implementação, possuindo diversos parâmetros livres que são determinados durante a execução, exigindo que o hardware que o comporta possua elevada capacidade computacional para funcionar sem erros ou com tempo de execução exacerbado. Para o caso de sistemas embarcados que necessitam de baixo custo de implementação, computadores de placa única são comumente adotados, considerando que tais hardwares podem ser aplicados em diversos contextos e possuem baixo custo de execução. Todavia, esses dispositivos são restritos em relação ao poder computacional e é necessário um grande estudo das técnicas que permitam a execução de algoritmos complexos em seus hardwares. Dessa forma, este trabalho tem o intuito de apresentar um exemplo de implementação de um classificador de imagens em um Computador de Placa Única com uma Rede Neural Convolucional (CNN) sendo executada. São expostos os conceitos de CNNs e de Processamento Digital de Imagens utilizados durante o desenvolvimento do projeto. O classificador desenvolvido captura imagens de dígitos manuscritos e classifica-os em tempo real em 10 classes distribuídas de 0 a 9. Além disso, demonstra-se as técnicas de Processamento Digital de Imagens desenvolvidas, que utilizam o Filtro Gaussiano para aproximar as imagens utilizadas para o treinamento da CNN e as imagens utilizadas durante o teste do classificador embarcado. Os resultados da classificação do sistema demonstram-se razoáveis para o cenário estabelecido, sendo resultados relevantes para o trabalho em questão, em especial ao que diz respeito a acurácia de classificação do sistema de 76% e uma precisão de 80% ao classificar as imagens.