Modelagem e resolução de problemas oscilatórios utilizando equações diferenciais de segunda ordem

Carregando...
Imagem de Miniatura

Data

08-03-2018

Título(s) alternativo(s)

Tipo de acesso

Acesso Abertoaccess-logo

Citar como

SACRAMENTO, Assis Maciel. Modelagem e resolução de problemas oscilatórios utilizando equações diferenciais de segunda ordem. Orientador: Manuel de Jesus dos Santos Costa. 2018. 76 f. Trabalho de Curso (Licenciatura em Física) – Faculdade de Ciências Exatas e Tecnologia, Campus Universitário de Abaetetuba, Universidade Federal do Pará, Abaetetuba, 2018. Disponível em: https://bdm.ufpa.br/jspui/handle/prefix/6815. Acesso em:.
Apesar da grande utilidade, nem sempre equações diferenciais ordinárias possuem solução analítica e exigem, portanto, uma abordagem numérica. Um dos métodos numéricos mais utilizados é o de Runge-Kutta de 4ª ordem e, neste trabalho, é analisada a sua eficiência ao comparar seus resultados com os obtidos analiticamente. Para isso foi realizada uma pesquisa bibliográfica para elucidar os conteúdos fundamentais relevantes, para o estudo de oscilações em três casos, no oscilador harmônico simples, no circuito RLC em série e no pêndulo amortecido e forçado, sendo realizado posteriormente um tratamento computacional e numérico destes sistemas. Da comparação entre os resultados numéricos e analíticos, pode-se constatar que o método de Runge-Kutta apresenta eficácia e robustez para estes casos e a sua implementação computacional fornece resultados confiáveis mesmo em situações onde as soluções analíticas não se aplicam (Pêndulo amortecido e forçado), onde a solução é caótica em alguns casos.

Fonte

1 CD-ROM

Fonte URI

Aparece na Coleção