2026-01-192026-01-192026-11-24PINTO, Victor Daniel Pinheiro. Solução analítica da equação da onda com amortecimento Kelvin-Voigt. Orientador: Anderson de Jesus Araújo Ramos. 2025. 39 f. Trabalho de Curso (Licenciatura em Matemática) – Faculdade de Matemática, Campus Universitário de Salinópolis, Universidade Federal do Pará, Salinópolis, 2025. Disponível em: https://bdm.ufpa.br/handle/prefix/9093. Acesso em:.https://bdm.ufpa.br/handle/prefix/9093The main objective of this work is to obtain the exact solution of the one-dimensional wave equation with Kelvin-Voigt-type viscoelastic damping, using the method of separation of variables and Fourier series. The equation under consideration models wave propagation in viscoelastic media, in which internal energy dissipation is proportional to the strain rate. We begin by presenting the fundamental theoretical concepts related to periodic functions, numerical series, convergence, and Fourier series. Next, we derive the governing differential equation using the direct method based on the laws of continuum mechanics, followed by its nondimensionalization, highlighting the relevant physical parameters. The exact solution of the problem with homogeneous Dirichlet boundary conditions is then constructed in the form of a Fourier series, revealing two distinct behavioral regimes: oscillatory (underdamped) vibration modes and overdamped modes, depending on the relationship between the mode number and the dimensionless damping parameter γ. Finally, the work presents computational simulations implemented in MATLAB, which illustrate the temporal evolution of the solution and demonstrate the influence of γ on the attenuation of vibration modes, thereby validating the theoretical model.Acesso AbertoEquação da ondaAmortecimento Kelvin-VoigtSéries de FourierViscoelasticidadeSimulação computacionalWave equationKelvin-Voigt dampingFourier seriesViscoelasticityComputational simulationCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICASolução analítica da equação da onda com amortecimento Kelvin-VoigtTrabalho de Curso - Graduação - MonografiaAttribution-NonCommercial-NoDerivs 3.0 Brazil