2026-01-132026-01-132025-05-16FERREIRA, Denilson da Cruz. Aplicação de massa ADM e centro de massa. Orientador: Amilcar Montalban Sayago. 2025. 50 f. Trabalho de Curso (Licenciatura em Matemática) – Faculdade de Matemática, Campus Universitário de Salinópolis, Universidade Federal do Pará, Salinópolis, 2025. Disponível em: https://bdm.ufpa.br/handle/prefix/9060. Acesso em:.https://bdm.ufpa.br/handle/prefix/9060This work aims to present the definition of the ADM (Arnowitt–Deser–Misner) mass and apply it to the calculation of the mass and center of mass of the exterior Schwarzschild manifold, an essential solution of general relativity. The ADM mass is a geometric quantity that is associated with the asymptotically flat behavior of a Riemannian manifold, being interpreted as the total mass of an isolated system in general relativity. To this end, we develop the mathematical tools that are necessary for this understanding, starting with the study of vector fields, differential operators such as gradient and divergence, and introducing the formulation of the divergence theorem. Next, we extend these concepts to the context of second-order tensors, which allows us to apply the divergence theorem to derive the ADM mass formula. Finally, we apply this theory to the exterior Schwarzschild manifold and demonstrate that the ADM mass found coincides with the mass parameter present in the metric. We also discuss the definition of the center of mass for asymptotically flat manifolds and show how it manifests in Schwarzschild geometry.Acesso AbertoCampos vetoriaisTeorema da divergênciaTensoresVariedades assintoticamente planasMassa ADMCentro de massaVariedade exterior de SchwarzschildVector fieldsDivergence theoremTensorsAsymptotically flat manifoldsADM massCenter of massSchwarzschild exterior manifoldCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAAplicação de massa ADM e centro de massaTrabalho de Curso - Graduação - MonografiaAttribution 3.0 Brazil