Please use this identifier to cite or link to this item:
https://bdm.ufpa.br/jspui/handle/prefix/6504
Compartilhar:
Type: | Trabalho de Conclusão de Curso - Graduação - Artigo |
Issue Date: | 19-Dec-2023 |
Title: | Sistemas de interface cérebro-máquina: classificação de imagética motora via geometria de Riemann com otimização bayesiana |
Creator: | LOPES, Danilo de Sousa |
First advisor: | SILVA, Cleison Daniel |
Citation: | LOPES, Danilo de Sousa. Sistemas de interface cérebro-máquina: classificação de imagética motora via geometria de Riemann com otimização bayesiana. Orientador: Cleison Daniel Silva. 2023. [6], 17 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação) – Campus Universitário de Tucuruí, Universidade Federal do Pará, Tucuruí, 2023. Disponível em: https://bdm.ufpa.br/jspui/handle/prefix/6504. Acesso em:. |
Resumo: | Neste estudo, é apresentada uma nova metodologia para aprimorar o desempenho de sistemas de Interface Cérebro-Máquina baseados em Imagética Motora. Utilizaram-se informações de diferentes regiões do espectro dos sinais de eletroencefalografia, representadas como matrizes de covariância ponderadas pelo janelamento de sub-bandas no espaço Riemanniano. Para classificar essas matrizes, foi empregado o algoritmo Distância Mínima à Média de Riemann. Os hiperparâmetro que influenciam a faixa de frequência de interesse, comprimento da sub-banda e taxa de sobreposição, são refinados por meio da Otimização Bayesiana, que proporcionou novos graus de liberdade de ajustes individuais. Para a fusão da classificação das matrizes, foi adotado o algoritmo Light Gradient Boosting Machine, baseado no m´método Ensemble, que assegura uma melhor precisão final do modelo e alto desempenho na classificação da Imagética Motora. Os experimentos foram conduzidos com o conjunto de dados IIa da IV Competição Internacional de Interface Cérebro-Máquina, e, apesar dos resultados superiores em apenas dois sujeitos, não foram observadas melhorias substanciais em relação à abordagem do estado da arte. Ainda assim, a metodologia é promissora e indica potencial para futuras otimizações e desenvolvimentos. |
CNPq: | CNPQ::ENGENHARIAS CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
Keywords: | Interface cérebro-máquina Eletroencefalograma Otimização Bayesiana Geometria de Riemann |
Type of access: | Acesso Aberto |
URI Source: | Disponível na Internet via Sagitta |
Appears in Collections: | Faculdade de Engenharia da Computação - FECOMP/CAMTUC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TCC_Artigo_SistemasInterfaceCerebro.pdf | 2,92 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License