Navegando por Assunto "YOLO"
Agora exibindo 1 - 5 de 5
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Avaliação de modelos de detecção de objetos na identificação de doenças pulmonares e cardíacas em imagens de raio-x torácicos(2024-10-04) PEREIRA, Lucas Vitor Loch; PINHEIRO, Daniel da Conceição; http://lattes.cnpq.br/2970581734279237As doenças pulmonares e cardíacas representam um dos maiores desafios à saúde pública, sendo responsáveis por uma significativa taxa de mortalidade global, cenário que foi ainda mais agravado pela pandemia de COVID-19, que evidenciou a importância de diagnósticos precoces e precisos. Nesse contexto, a radiografia torácica destaca-se como um dos métodos mais eficazes para a detecção dessas patologias, pois permite uma análise detalhada da caixa torácica, pulmões e coração, fornecendo informações cruciais para o diagnóstico e acompanhamento clínico. Este trabalho propõe uma análise comparativa entre quatro modelos de detecção de objetos — YOLOv5, YOLOv8, Faster R-CNN e RetinaNet — com o objetivo de avaliar qual deles apresenta o melhor desempenho em precisão e sensibilidade na identificação de doenças pulmonares e cardíacas em imagens de raio-X torácico. A pesquisa examina as características específicas de cada modelo, considerando a eficácia na identificação de diversas patologias, como atelectasia, cardiomegalia, efusão, infiltração e pneumonia, e explora as métricas de avaliação, como precisão, sensibilidade e taxa de falsos positivos, para determinar qual modelo se destaca na prática clínica. Os resultados esperados visam contribuir para o avanço da detecção automatizada dessas doenças, oferecendo uma base sólida para a implementação de tecnologias de inteligência artificial em ambientes clínicos, com o intuito de melhorar a acurácia dos diagnósticos e, consequentemente, os desfechos dos pacientes.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Detecção de EPI's com ferramenta de visão computacional(2024-11-27) OLIVEIRA, Matheus da Silva; PINHEIRO, Daniel da Conceição; http://lattes.cnpq.br/2970581734279237Este trabalho de conclusão de curso aborda o desenvolvimento de um sistema de reconhecimento de Equipamentos de Proteção Individual (EPIs) utilizando a técnica YOLO (You Only Look Once). A detecção automática de EPIs em ambientes de trabalho é fundamental para garantir a segurança dos trabalhadores e cumprir com as normas regulamentares de segurança. O uso de EPIs, como capacetes, luvas, coletes reflexivos e óculos de proteção, é essencial em diversos setores, especialmente na construção civil e na indústria. No entanto, a fiscalização manual do uso desses equipamentos pode ser ineficiente e suscetível a erros humanos. O YOLO é um dos algoritmos mais avançados para detecção de objetos em tempo real, conhecido por sua alta velocidade e precisão. Este projeto envolveu a coleta e anotação de um conjunto de dados de imagens de trabalhadores equipados com diversos EPIs. As imagens foram cuidadosamente selecionadas para representar uma ampla gama de cenários e condições de iluminação, garantindo a robustez do modelo. O algoritmo YOLO foi então treinado com esses dados, utilizando técnicas de aprendizado profundo para ajustar seus parâmetros e otimizar seu desempenho. Durante o processo de treinamento, várias estratégias foram implementadas para melhorar a precisão do modelo. Após o treinamento, o modelo foi testado em um conjunto de dados de validação para avaliar sua capacidade de reconhecer corretamente os EPIs nas imagens. Os resultados foram analisados com base em métricas como precisão, recall e F1-score, demonstrando a eficácia do modelo desenvolvido.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Monitoramento inteligente de fadiga: detecção de sonolência em motoristas com IA e visão computacional para aumentar a segurança no trânsito(2024-11-28) COSTA, Leonardo Cabral da; PINHEIRO, Daniel da Conceição; http://lattes.cnpq.br/2970581734279237A fadiga que provoca sinais de sonolência em motoristas é uma das principais causas de acidentes de trânsito. Esses sinais se manifestam em diferentes níveis de gravidade, e quanto maior o nível, maior o risco de acidentes. Este trabalho apresenta um método baseado em inteligência artificial, aprendizado de máquina, aprendizado profundo e visão computacional para desenvolver um sistema capaz de identificar sinais de sonolência e emitir alertas proporcionais ao nível de fadiga detectado. Com o uso da ferramenta YOLO (You Only Look Once), amplamente reconhecido por sua eficácia em detecção de objetos em tempo real, foi desenvolvido um modelo para reconhecer sinais de sonolência em motoristas. O processo de construção do modelo incluiu etapas essenciais, como a coleta de imagens e o treinamento do modelo. Após o treinamento, o modelo foi submetido a testes, que mostraram sua eficiência em detectar sinais de fadiga e seus resultados foram avaliados por meio de métricas estatísticas, verificando sua precisão na identificação dos diferentes níveis de fadiga. Com base nesses sinais, o sistema pode alertar o motorista em casos de fadiga acentuada, atuando como uma ferramenta preventiva para aumentar a segurança no trânsito. Assim, o sistema contribui para a redução de acidentes relacionados à sonolência.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Sistema de reconhecimento automático de placas veiculares utilizando visão computacional(2024-12-05) HORA, Breno Aires da; PINHEIRO, Daniel da Conceição; http://lattes.cnpq.br/2970581734279237Este trabalho apresenta a detecção e o reconhecimento de placas de identificação veicular com uso de técnicas de visão computacional aplicadas à fiscalização de trânsito. Foi criado um conjunto de dados próprio com placas brasileiras, isso inclui as etapas de gravação, seleção e anotação de imagens, combinado a um conjunto de dados internacional para o treinamento de variantes do modelo YOLO, seguido de uma análise do desempenho geral desses modelos. Além da detecção de placas, o reconhecimento óptico de caracteres (OCR) foi realizado com os modelos EasyOCR e PaddleOCR, enquanto esse último foi o mais eficiente. Os experimentos mostraram que o modelo YOLOv8s-gb superou o YOLOv5su-g em confiança média, sensibilidade média e tempo de processamento. A combinação do PaddleOCR com o YOLOv8s-gb e YOLOv5su-g aplicados a um total de 460 placas, resultou no reconhecimento de 244 e 208, respectivamente, enquanto o EasyOCR reconheceu 118 e 89 placas nos mesmos cenários. O estudo destaca a importância de conjuntos de dados específicos para aprimorar modelos de visão computacional em contextos locais, isso contribui para o avanço do reconhecimento automático de placas veiculares no Brasil.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Uso de sistemas generalistas de reconhecimento de imagem na diferenciação de lesões de pele(2025-03-31) GIORDANO, Gabriel Ventura; PINHEIRO, Daniel da Conceição; http://lattes.cnpq.br/2970581734279237O presente trabalho trata do uso de ferramentas de processamento e classificação de imagem na distinção entre dois diferentes tipos de lesão de pele (nevos e melanoma). Primeiramente, os subconjuntos de dados foram rotulados, um modelo de classificação de imagens foi treinado utilizando os dados rotulados, e por fim, a validação do modelo foi feita usando o conjunto completo de dados. As imagens utilizadas vieram de um banco de imagens médicas disponibilizadas publicamente, que foram processadas usando o YOLO11, uma ferramenta de treinamento de modelos para reconhecimento de imagem. O modelo chegou a alcançar uma taxa de acerto de 67% no conjunto de melanoma e 87% no conjunto de nevos na classificação dessas lesões.