Navegando por Assunto "Mundo de Wumpus"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Algoritmo genético como mecanismo de aprendizagem do agente na resolução do Mundo de Wumpus(2019) ARAÚJO, Natália Freitas; TEIXEIRA, Otávio Noura; http://lattes.cnpq.br/5784356232477760O presente artigo faz uma abordagem sobre conceitos relacionados à Inteligência Artificial e sua aplicação para o problema do mundo de Wumpus com a utilização da técnica de Algoritmo Genético (AG). O objetivo é aplicar a técnica de AG como Mecanismo de Aprendizagem de um Agente Inteligente. O modelo de ambiente utilizado foi devidamente formalizado, de acordo com as recomendações feitas por Stuart Russel e Peter Norvig, além do ambiente, foi realizada uma categorização do Algoritmo Genético desenvolvido conforme a teoria e definição de agentes inteligentes. Também foi desenvolvida uma tabela de pontuação e uma equação fitness para o processo de avaliação de cada indivíduo gerado. Além do referencial teórico, apresenta-se todo o processo de execução, os métodos utilizados e os resultados obtidos. O projeto conta com um robusto conjunto de dados resultantes, com a realização de 4.200 execuções obtevese o total de 12.600 arquivos, os quais contêm informações como – pontuação, tempo de execução, melhor cromossomo de cada uma das gerações executadas. Após as discussões dos resultados apresenta-se que os indivíduos gerados tiveram um melhor desempenho em ambientes com menores escalas, destaca-se que o algoritmo teve 97,7% de vitórias no ambiente de dimensão 5x5, seguido de uma drástica queda, como 10,5% de vitórias para o ambiente de dimensão 10x10 e a ineficiência aos demais ambientes testados.Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Técnicas de aprendizagem por reforço na resolução do Mundo de Wumpus(2022-12-13) RODRIGUES, Rodrigo Moraes; ARAÚJO, Natália Freitas; http://lattes.cnpq.br/2344521554133884; TEIXEIRA, Otávio Noura; http://lattes.cnpq.br/5784356232477760Este trabalho tem por objetivo analisar o desempenho de um agente baseado em Aprendizagem por Reforço. O seu mecanismo de aprendizagem está baseado em três algoritmos: Q-learning (QL), Deep Q-Network (DQN) e Double Deep Q-Network (DDQN). Para validação do agente e seus métodos, foi definido como ambiente o Mundo de Wumpus, o qual foi modelado segundo os padrões de ambientes adotados pela DeepMind Lab. A partir dos experimentos realizados e suas respectivas configurações, foi observado que os agentes conseguiram alcançar o objetivo principal somente em duas configurações de ambientes. No ambiente 4x4 a porcentagem de vitória dos algoritmos QL, DQN e DDQN foram 0.005, 22.96, 18.73 % respectivamente, o que reduziu drasticamente para o cenário 10x10 e não conseguindo cumprir o objetivo para os demais ambientes.