Logo do repositório
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Tudo na BDM
  • Documentos
  • Contato
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Geometria riemanniana"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Trabalho de Curso - Graduação - MonografiaAcesso aberto (Open Access)
    A estimativa do primeiro autovalor do laplaciano para hipersuperfícies mínimas
    (2023-12-13) SANTOS, Williams da Silva; SILVA, Adam Oliveira da; http://lattes.cnpq.br/2721856201150293; https://orcid.org/0000-0003-2587-1729
    Neste trabalho, abordaremos os principais conceitos da geometria riemanniana, o qual é um campo da geometria diferencial dedicado ao estudo das variedades riemannianas. Estes conceitos têm a capacidade de estender, por exemplo, a compreensão dos principais operadores do cálculo diferencial integral, como o laplaciano. A partir disso, usaremos esses conceitos para obter uma estimativa para o primeiro autovalor do laplaciano para a hipersuperfícies minimamente mergulhadas em Sn+1, o qual foi obtido em [2], nessa demonstração empregamos a conhecida fórmula de Reilly. Porfim, combinaremos esse resultado comum resultado obtido por P.Yang e S.T.Yau em[8], para obter um limite inferior para a área de uma hipersuperfície mínima em termos de seu gênero, da sua dimensão e do primeiro autovalor do laplaciano.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Brasão UFPA