Navegando por Assunto "Brain-computer interface"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Interface cérebro-máquina baseada em potenciais visualmente evocados: análise de extração de épocas(2023-12-15) DIAS, Fablena Kathllen Nascimento; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; https://orcid.org/0000-0001-8280-2928A Interface Cérebro-Máquina (ICM) busca não apenas compreender, mas também otimizar os complexos processos neurais, estabelecendo uma comunicação entre o cérebro e um dispositivo eletrônico. A neurociência aplicada à ICM envolve o estudo dos sinais cerebrais para identificar padrões associados a intenções específicas, permitindo a criação de algoritmos capazes de interpretar essas intenções em comandos para controle de dispositivos, a evolução dessa área promissora se destaca por impulsionar a compreensão dos processos cerebrais e oferecer soluções práticas, como melhorias na qualidade de vida para pessoas com limitações motoras. Os sistemas ICM baseados em Steady State Visually Evoked Potential (SSVEP) usam respostas cerebrais a qualquer estímulo visual piscando em uma frequência constante como comando de entrada para um aplicativo ou dispositivo externo, embora seja amplamente utilizado para muitas aplicações, existem características do sistema que devem ser analisadas e discutidas visando aumentar o desempenho da aplicação. Este estudo aborda o préprocessamento, extração de características e classificação nas etapas de processamento digital de sinais em uma ICM baseada SSVEP. Os resultados incluem análises comparativas da extração de épocas em cinco diferentes tamanhos (2s, 1s, 500ms, 250ms, 125ms) para sinais de eletroencefalograma (EEG) em uma Interface Cérebro-Máquina diante de estímulos em três frequências distintas de SSVEP (8Hz, 14Hz e 28Hz). As acurácias de classificação são apresentadas para cada análise. Os resultados obtidos por meio da classificação do sistema revelam que épocas com durações maiores apresentam melhor desempenho. Entretanto, é notório que, ao analisar épocas com menor duração, estas possuem desempenho razoável, oferecendo eficácia para o cenário e proporcionando maior número de comandos aplicáveis em uma configuração de ICM-SSVEP.Trabalho de Curso - Graduação - Relatório Desconhecido Interface Cérebro-Máquina: uma abordagem ótima via distância de Riemann por subbanda(2024-11-01) ANJOS, Leilane de Jesus; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; https://orcid.org/0000-0001-8280-2928Este trabalho, apresenta o relatório de pesquisa intitulado "Interface Cérebro-Máquina: uma abordagem ótima via distância de Riemann", desenvolvido entre 01 de setembro de 2023 à 31 de agosto de 2024, durante a execução do projeto de pesquisa denominado "Técnicas de otimização aplicadas a Interface Cérebro-Máquina", financiado pela Fundação Amazônica de Amparo a Estudos e Pesquisas, sob orientação do professor Dr. Cleison Daniel Silva. Este trabalho foi elaborado seguindo a resolução nº1/2024 da Faculdade de Engenharia Elétrica- CAMTUC, que regulamenta os termos da flexibilização do Trabalho de Curso na IN nº5/2023 da PROEG-UFPA. Sistemas de Interface Cérebro Máquina (ICM) são tecnologias capazes realizar a comunicação entre o cérebro humano e dispositivos externos, a partir de sinais neurais, que podem ser coletadas, através de técnicas de neuroimagem como a eletroencefalografia (EEG), processadas e convertidas em comandos. O estudo da pesquisa, concentra-se em melhorar o desempenho de classificação em sistemas de ICM baseados em imagética motora usando o método de Mínima distância a Média de Riemann (do inglês Minimum Distance to Riemann Mean - MDRM) através do algoritmo de classificação Distância Mínima à Média (do inglês Minimum Distance to Mean - MDM) para a extração de informações discriminantes a partir de sinais de EEG representados por matrizes de covariância simétricas positivas definidas por sub-banda, formando uma representação normalizada dos sinais de EEG que são entregues ao algoritmo de classificação Máquina de Vetor de Suporte (do inglês Support Vector Machine). Os hiperparâmetros relacionados a faixa de frequência de interesse, número de sub-bandas e parâmetros do classificador, são ajustados por meio da Otimização Bayesiana de modo a lidar com as características inter e intra sujeitos, permitindo ajustes individuais. Os resultados obtidos a partir de um conjunto de dados públicos apresentaram melhorias significativas em comparação como um método previamente proposto. A acurácia do classificador foi utilizada para a comparação, servido de base para discussões e conclusões da pesquisa.