Logo do repositório
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Tudo na BDM
  • Documentos
  • Contato
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "SANTOS, Isaac Moraes dos"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Trabalho de Curso - Graduação - MonografiaAcesso aberto (Open Access)
    Otimização multiobjetivo de misturas de concreto utilizando xgboost e algoritmo genético: uma abordagem sustentável baseada em IA
    (2025-09-16) SANTOS, Isaac Moraes dos; SILVA, Edilson Morais Lima e; http://lattes.cnpq.br/5216270980191539; https://orcid.org/0000-0003-4733-3200
    Este trabalho propõe uma abordagem inovadora para a otimização multiobjetivo de misturas de concreto, visando conciliar resistência mecânica, redução de custos e diminuição da pegada de carbono (CO₂). A metodologia integra o algoritmo preditivo XGBoost, com quantificação de incertezas, e o algoritmo genético NSGA-II para otimização. O XGBoost foi refinado para prever a resistência do concreto, enquanto o NSGA-II explorou soluções que equilibram os múltiplos objetivos de desempenho e sustentabilidade. Os resultados demonstram a eficácia do modelo de machine learning na otimização de misturas de concreto, validando estatística e matematicamente sua precisão e robustez em comparação com métodos tradicionais. Este estudo destaca o potencial da inteligência artificial para aprimorar a engenharia civil, oferecendo ferramentas para decisões mais informadas e sustentáveis. Futuras etapas incluem a realização de ensaios laboratoriais para validação prática dos resultados computacionais, consolidando a aplicabilidade da abordagem em um contexto real. Palavra-chave: Otimização Multiobjetivo; Concreto; Machine Learning; XGBoost; Algoritmo Genético; Sustentabilidade; Resistência a Compressão; Traço de Concreto.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Brasão UFPA