Logo do repositório
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Tudo na BDM
  • Documentos
  • Contato
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "MARTINS, Leonardo Dias"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Trabalho de Curso - Graduação - MonografiaAcesso aberto (Open Access)
    Mineração de texto para análise afetiva da interação dos usuários com jogos empáticos
    (2019) MARTINS, Leonardo Dias; ARAÚJO, Fabíola Pantoja Oliveira; http://lattes.cnpq.br/7676631005873564
    Diariamente uma grande quantidade de dados circula na internet, pois, é enorme a quantidades de computadores e equipamentos eletrônicos que possuem acesso à internet, produzindo informações em forma de imagens, vídeos e textos, com isso, é necessária uma forma de analisar e extrair essas informações. Portanto, esse trabalho apresenta conceitos e técnicas para encontrar padrões de sentimentos e emoções, por meio do uso de técnicas e ferramentas, principalmente da área de mineração de textos. A finalidade dos procedimentos realizados nesse trabalho foi desenvolver um método para poder extrair os perfis emocionais e sentimentais dos comentários dos usuários do jogo Last Day of June, onde foram apresentados os resultados e informações extraídas da análise de sentimentos realizada. Foram utilizados também, três algoritmos de classificação, Naive Bayes, Máquina de vetor de suporte (SVM) e K-Vizinhos mais próximos (KNN), para prever a classe dos elementos de acordo com os sentimentos identificados na etapa de análise dos comentários, entre eles, o SVM com kernel Radial foi o que apresentou a melhor precisão, com 79%, seguido do KNN com 3 vizinhos mais próximos, com 75% e por último o Naive Bayes, com 62%.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Brasão UFPA